No. de réf.: 233

Régulateur de débit

La nouvelle génération avec étanchéité par joints à lèvres

Type VRK - automatique, de forme cylindrique avec raccords mâles ou système de brides sans vis Extrémités de raccordement selon la norme DIN 12237

Boîtier soudé au laser

par conséquence, réduction des coûts d'assemblage

L'original - Qualité 100% Aerotechnik

Aerotechnik E. Siegwart GmbH
Untere Hofwiesen • D-66299 Friedrichsthal

↑ + 49 (0) 6897/859-0 • ♣ +49 (0) 6897/859-150
www.aerotechnik.de • info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Application:

Les régulateurs de débit VRK sont utilisés dans des systèmes de tuyauterie complexes pour le contrôle automatique du volume d'air de distribution. La fonction consiste à maintenir une valeur prédéterminée de consigne d'écoulement d'air. En fonction des variations de la pression d'air du canal, l'écoulement d'air durable d'une chambre est régulé par l'aspiration ou l'échappement d'air de cette chambre.

Fonctionnalité:

Pour les contrôleurs à volume constant sans alimentation auxiliaire, le contrôle de flux est réalisé par un panneau de commande mobile sur paliers et incliné asymétriquement qui assure un comportement de réponse rapide et un contrôle sensibles, même pour de petites quantités de débits d'air.

Réaction et

contrôle de l'exactitude: Le contrôleur fonctionne à partir d'une différence de pression minimale de réaction. La vitesse d'écoulement (voir figure 1) est fonction de la différence de pression maximale de 1000 Pa dans un régime de régulation stable. Sur l'ensemble de cet régime de pression, la déviation de la vitesse d'écoulement est de ±10% (inférieure à 100 m³ / h ±10 m³/h). Pour des vitesses d'air plus petites, inférieure à 4 m/s et dans le cas de montage horizontal, l'écart de débit peut facilement être plus grand que celui indiquée ci-dessus. La pollution ou une légère contrainte lors de l'installation peuvent influencer les conditions d'écoulement et entrainer des écarts plus importants.

Plage

de température:

Les composants du contrôleur sont en grande partie résistant au vieillissement et à la température de -30 °C à +100 °C. Sur demande, le contrôleur est également disponible dans une version spéciale avec une résistance à la température allant jusqu'à 180 °C. Les contrôleurs de volume avec actionneurs sont régis par l'application des températures de fonctionnement autorisées par les actionneurs. Elles sont dépendantes du type et de la fabrication.

Assemblage du contrôleur:

Le panneau de commande est monté dans une baque lisse en PTFE sans entretien. Le clapet est guidé par des paliers interne non traversant l'enveloppe du corps de tuyau. Ce type de montage réduit les fuites et les sifflements à haute fréquence. Un amortisseur pneumatique à piston empêche les vibrations et les oscillations de la plaque de commande. Ce système garantit un comportement de réponse rapide et un contrôle précis.

Installation:

L'équilibre exact de la plaque de commande est assuré par un contrepoids disposé verticalement sur la plaque de commande, ce qui assure dans toutes les orientations un contrôle de réponse précis. Le profil d'écoulement devant le régulateur de débit doit être à section-remplissante, les conditions d'écoulement défavorables (comme le débit asymétrique, striction, déviation autour des bords tranchants) peuvent affecter le comportement de réponse et de contrôle.

Définition:

Les contrôleurs de débit à volume constant sont livrés soit avec le débit requis par le client ou avec un débit de référence fixé à l'usine. Le débit peut être modifié à tout moment par le client. Le réglage manuel avec une clé Allen (2 mm) est directement lu sur une échelle. Eventuellement, la valeur de consigne de débit d'air peut être modifiée par un actionneur électrique ou pneumatique.

Dimensions:

Lors de la sélection de l'unité de commande et le dimensionnement du système de conduites, il est à noter que le débit dans le système de tuyauterie ne doit pas être inférieure à 2,7 m/s. Le système de tuyauterie en amont et en aval de l'unité de commande doit avoir le même diamètre. Comme valeur de référence, une vitesse moyenne de l'air dans le tuyau de 4,5 m/s est recommandée. Cette valeur est considérée comme centrale et d'orientation.

Isolation:

Les régulateurs de débit peuvent être mises en œuvre avec une isolation phonique et thermique dans les épaisseurs de 25 ou 50 mm et des coquilles d'isolation.

Aerotechnik E. Siegwart GmbH Untere Hofwiesen • D-66299 Friedrichsthal www.aerotechnik.de · info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Instructions

de montage: Selon la norme DIN EN 12097, pour le fonctionnement et l'entretien du système, une accessibilité au

système de tuyauterie et au contrôleur de débit doit être respecté. Pour l'installation dans des tuyaux verticaux une protection supplémentaire contre le retrait du contrôleur est nécessaire. Par exemple: déverrouillage par verrue de sécurité. Lors du montage derrière des déviations ou embranchements,

la distance de soufflage libre doit être d'au moins 2,5* DN.

Corps de tuyau: Les tubes du corps sont réalisés en tôle d'acier galvanisé ou éventuellement en acier inoxydable. La

soudure laser bout à bout sans déport assure l'alignement de la coquille. Les extrémités enfichables sont calibrées pour montage pressé selon la norme DIN 12237. Ils sont indéformables et ils

s'adaptent avec précision.

Systèmes de connexion étanche:

Etanchéité: Le connecteur avec joints à lèvres en caoutchouc est étanche à l'air selon la norme DIN EN 12237

Classe D.

Remplacement: Si le joint à lèvre en caoutchouc est endommagé ou perdu en raison d'un événement imprévu, un

nouveau joint d'étanchéité de remplacement est facile à monter.

Démontage: La conception du système d'étanchéité permet la séparation des composants.

Montage visuel: Une étanchéité supplémentaire par ruban adhésif est inutile. La conception d'étanchéité avec

joints à lèvres en caoutchouc est particulièrement adaptée pour les montages apparents.

Hygiène: La surface lisse du boîtier cylindre soudé au laser en bout à bout empêche l'accumulation de

particules de poussière et d'impureté.

Résistance: La résistance au vieillissement du joint à lèvre en caoutchouc (matériau EPDM) est assurée. Le

matériau est inerte contre les vapeurs et les produits chimiques de faiblement agressivité.

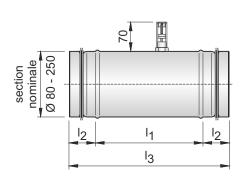
ATEX: Le régulateur à débit constant peut également être fabriqué dans la conception anti-explosion selon

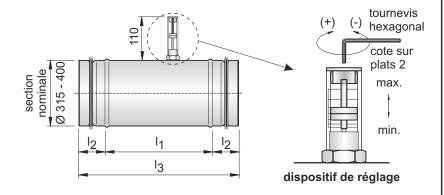
ATEX. Il peut être utilisé en conséquence correspondant à la catégorie d'appareils 2 dans les zones de protection d'explosion de gaz 1 ou 2, et dans les zones de protection à l'explosion de la poussière

21 et 22. Le contrôleur se caractérise comme suit: Il 2GD c T 80 $^{\circ}$ C.

Emballage: Pour le stockage en chantier de construction ou pour les applications à nécessites de pureté élevés,

les contrôleurs peuvent être fournis dans une protection. Cet emballage spécifique permet d'éviter le malfontionnement du débitmètre par pollution intèrne du contrôleur. Cette emballage

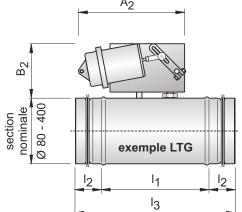

supplémentaire engendre de légers surcoûts.



Aerotechnik E. Siegwart GmbH
Untere Hofwiesen • D-66299 Friedrichsthal

+ 49 (0) 6897/859-0 • 县 +49 (0) 6897/859-150
www.aerotechnik.de • info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

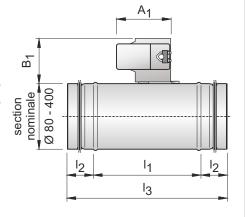

Version 1:

- Régulateur de débit de volume constant avec connexion étanche (uniquement par ajustement approprié)
- Régulation automatique sans énergie auxiliaire, avec un pré-reglage des paramètres en usine ou avec des paramètres du réglage de la quantité d'air prédéterminés par le client.
- Les clients peuvent modifier la quantité d'air par réglage manuel
- Un contrôleur de conception spéciale est également disponible sans ajustement. Ainsi, aucune nécessité de construction supplémentaire. Exemple: montage visuel adapté (le volume d'air ne peut pas être modifié par le client)
- I₁ = longueur d'installation

longueur totale = $I_1 + 2 * I_2 = I_3$

Version 2:

- La construction de la régulation et le fonctionnement est identique à la version 1.
 Le préréglage en usine est effectué par une commande pneumatique à actuateur variable.
- LTG: La pression de commande est réalisée entre 0,2 et 1,0 bar (pression de service maximale admissible de 1,3 bar)
- Airtorque: La pression de commande est de 5,0 bar
- Type du moteur: LTG SMA 1 ou équivalent SN Ø 80 250 mm Airtorque ou équivalent SN Ø 315 - 400 mm



Version 3:

- La construction de la régulation et le fonctionnement est identique à la version 2.
 Le préréglage est réalisé en usine. Régulation effectueé pour une tension de fonctionnnement de 230 V et 50 Hz et par deux valeurs électriques de consignes par actuateur. Comme contrôleur à deux consignes sans position intermédiaire.
 Le contrôle des consignes est réalisé par des contacts de commutation.
- Type du moteur: Belimo LM 230A

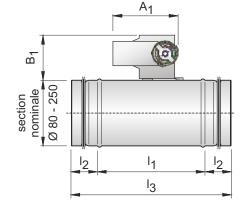
ou équivalent

SNø 80-400 mm

Aerotechnik E. Siegwart GmbH Untere Hofwiesen · D-66299 Friedrichsthal + 49 (0) 6897/859-0 · 具 +49 (0) 6897/859-150 www.aerotechnik.de · info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Version 5:


- Structure de régulation et de fonctionnement **analogue à la version 3**, mais avec une tension de service de 24 volts
- Type du moteur: Belimo LM 24A ou équivalent SN ø 80 400 mm

Version 6:

- Structure de régulation et de fonctionnement **analogue à la version 3**, mais avec une commande variable de réglage électrique avec une tension de fonctionnement de 24 volts, 50 Hz et un signal de commande de 2-10 volts
- Type du moteur: Belimo LM 24A-MF ou équivalent SN ø 80 400mm

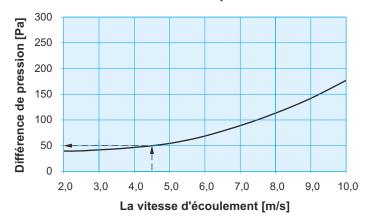
Version 7:

- Structure de régulation et de fonctionnement analogue à la version 3.
- Type du moteur: Belimo CM 230-L ou équivalent SN ø 80 250 mm

Version 8:

- Structure de régulation et de fonctionnement **analogue à la version 7**, mais avec une commande variable de réglage électrique avec une tension de fonctionnement de 24 volts.
- Type du moteur: Belimo CM 24-L ou équivalent SN ø 80 250 mm

Aerotechnik E. Siegwart GmbH
Untere Hofwiesen • D-66299 Friedrichsthal


↑ + 49 (0) 6897/859-0 • ♣ +49 (0) 6897/859-150
www.aerotechnik.de • info@aerotechnik.de

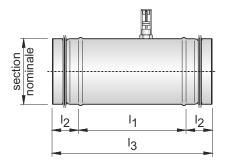
Régulateur de débit cylindrique à volume constant et réglage automatisé

Réponse minimale de la pression différentielle

• Lors du dimensionnement du système de tube, la différence de pression statique minimale de réponse du régulateur de débit doit être observée selon les valeurs du diagramme 1.

Schéma 1: Valeurs de référence pour la sensibilité

Exemple:


Régulateur de débit: modèle 233 Largeur nominale: 160 Vitesse de l'air: 4,5 m/s Débit: 325 m³/h

Différence minimale de pression statique [Pa]:

 Δ p [Pa] selon le schéma 1: 50 Pa

Dimensions - débit volumètrique

Section nominale du passage	_	ebit réglable ³/h]		Dimensions [mm]											
[mm]	min.	max.	l ₁	l ₂	l ₃	A ₁	B ₁	A_2	B ₂						
80	40	125	135	40	215	160	102	225	100						
100	70	220	165	40	245	160	102	255	100						
125	100	280	165	40	245	160	102	225	100						
140	150	400	165	40	245	160	102	225	100						
150	170	450	165	40	245	160	102	225	100						
160	180	500	235	40	315	160	102	225	100						
180	200	600	235	40	315	160	102	225	100						
200	250	900	235	40	315	160	102	225	100						
250	500	1600	235	40	315	160	102	225	100						
315	800	2800	225	60	345	138	102	300	150						
355	900	3200	295	60	415	132	131	300	150						
400	1000	4000	295	60	415	132	131	300	150						

Aerotechnik E. Siegwart GmbH
Untere Hofwiesen • D-66299 Friedrichsthal
+ 49 (0) 6897/859-0 • +49 (0) 6897/859-150
www.aerotechnik.de • info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Bruit d'écoulement de débit et exemple de calcul du niveau de pression acoustique en salle

L'évaluation acoustique commence à la source sonore qui peut être d'origines diverses (par exemple, ventilateur et régulateur de débit). La caractérisation d'une source sonore est donné par le niveau de puissance acoustique. Celui-ci est numériquement égal au niveau de pression sonore lorsque le niveau de pression se réfère à la surface de 1 m². La tâche consiste essentiellement à réaliser un niveau de pression sonore dans la salle donnée, ce qui donne pour le type d'application spécifique, la taille de l'isolation acoustique.

La figure 1 montre un tuyau sans absorbeur acoustique. Par contre la figure 2 montre une application avec absorbeur acoustique avec son effectivité et son impact identifié. Pour des volumes d'air très différents, une augmentation du bruit d'écoulement peut se produire avec des vitesses d'air plus importantes dans le système de tuyauterie.

La Figure 2 montre l'exemple d'une réduction satisfaisante du bruit par l'installation d'un silencieux à absorption (perte d'insertion dans le système de tuyauterie). Les figures 1-4 montrent les influences acoustiques multiples sans interactions sur l'évaluation du système.

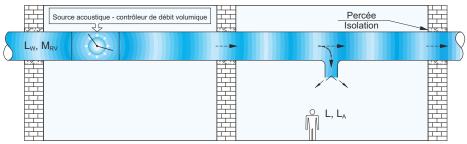


Figure 1: Présentation - contrôleur de débit volumétrique sans absorbeur acoustique

	Niv	eau d	e puis	sanc	e son	ore [d	B/oct	ave]	tal dB (A)
f _m	63 Hz	125 Hz	250 Hz	ZH 009	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niveau total A-évaluation dB
Bruits d'écoulement Lw selon le tableau 1	53	51	47	44	43	42	36	34	48
Amortissement de réflexion	-21	-16	-10	-4	-2	0	0	0	-
Isolation du local	-4	-4	-4	-4	-4	-4	-4	-4	-
A-évaluation	-26	-16	-9	-3	0	+1	+1	-1	-
Niveau de la pression acoustique LA	2	15	24	33	37	39	33	29	42

Exemple d'évaluation:

Indication du niveau de pression sonore pour une chambre (voir VDI 2081): 42 dB (A)

Régulateur de débit: modèle 233 Largeur nominale: 140 mm Débit: 270 m³/h Pression différentielle: 100 Pa

Niveau de pression acoustique en salle calculé = 42 dB (A)

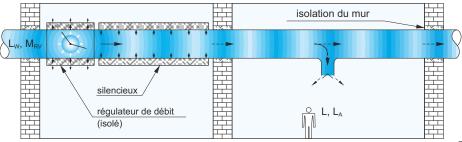


Figure 2: Présentation - contrôleur de débit avec absorbeur

EXE	emple	e a e	valu	ation:

Indication	du	niveau	de	pression	sonore	pour	une
chambre:				8 dB	(A)		
D′ 1.1		171.9					

Régulateur de débit:modèle 233Largeur nominale:160 mmDébit:340 m³/hPression différentielle:250 Pa

Absorbeur acoustique: 160 / 200 x 1000 mm

Niveau de pression acoustique en salle calculé = 35 dB (A)

	Niveau de puissance sonore [dB/octave]												
f _m	63 Hz	125 Hz	250 Hz	2H 009	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niveau total A-évaluation dB				
Bruits d'écoulement L _w selon le tableau 1	62	60	56	53	51	51	44	43	57				
Atténuation causée par le silencieux	-1	-2	-5	-10	-25	-34	-17	-12	-				
Amortissement de réflexion	-20	-14	-9	-3	-1	0	0	0	-				
Isolation du local	-4	-4	-4	-4	-4	-4	-4	-4	-				
A-évaluation	-26	-16	-9	-3	0	+1	+1	-1	-				
Niveau de la pression acoustiquel L _A	11	24	29	33	21	14	24	26	35				

Aerotechnik E. Siegwart GmbH
Untere Hofwiesen · D-66299 Friedrichsthal
一 + 49 (0) 6897/859-0 · 县 +49 (0) 6897/859-150
www.aerotechnik.de · info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Tableau 1: Bruits d'écoulement émis par le régulateur de débit

				Pression di									ie I le	stati	que	au n	ivea	u du	régu l	ateu	r [Pa]						
آت					100	Pa								250	Pa								500	Pa				
 	[m³/ h]						tique				Nive	eau a					orma	ance					u ac					
nina	'air [m		perf	oma	ance	oct	avie	nne*		tal dB(A)			0	ctavi	enn	e*			ital dB(A		perf	orma	ance	oct	avie	nne*		tal dB(A
non	~				[dB/	octa	ive]			Niveau total _{ta} A-éval dB([dB/		ive]			Niveau total _{tota (} A-éval dB(A)				[dB/		_			Niveau total _{otal} A-éval dB
Section nominale [mm]	Débit (63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niv L _{wtda} ⊬	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niv. L _{ubal}	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Nivæu total L _{w tolal} A-éval dB(A)
	40	37	37	35	33	33	33	28	27	38	39	42	43	44	44	46	41	41	50	46	49	49	50	51	53	48	48	57
80	82	49	47	44	41	39	39	33	32	45	51	51	50	49	48	49	44	44	54	58	58	56	55	55	56	51	51	61
	125	52	51	48	45	44	44	38	37	49	61	60	57	54	53	53	47	46	58	68	66	63	61	59	59	53	52	65
	70	40	39	38	36	35	36	30	29	41	43	45	46	46	47	49	44	43	53	49	52	52	53	54	55	50	50	60
100	135	50	48	45	42	41	40	34	33	46	59	57	54	51	50	49	43	42	55	60	60	58	57	57	58	53	52	63
	200	54	52	49	47	45	45	39	38	51	63	61	58	55	54	54	48	47	59	70	68	65	62	61	60	54	53	66
	100	41	40	38	36	35	36	30	29	41	45	47	47	48	48	49	44	43	54	52	54	54	54	55	56	50	49	60
125		51	49	46	42	41	40	34	32	46	55	54	53	51	51	51	46	45	56	61	61	59	58	57	58	52	52	63
	280	54	53	50	47	45	45	39	37	50	63	61	58	55	54	53	47	46	59 55	64	64	62	61	61	62	57	56	67
140	150 270	43 53	42 51	40 47	38 44	37 43	37 42	31 36	30 34	42	47 61	49 59	49 56	49 53	50 51	51 51	46 44	45 43	55 57	53 63	56 63	56 61	56 60	56 59	58 60	52 54	51 54	62 65
140	400	56	55 55	52	49	43 47	42 47	41	39	48 52	65	63	60	55 57	56	55	44 49	43 48	61	72	70	67	64	62	62	56	55 55	68
	150	43	42	40	38	37	37	31	30	42	47	49	49	49	50	51	45	44	55	54	56	56	56	56	57	52	51	62
150		52	50	46	43	41	41	34	33	47	56	56	54	52	52	52	46	46	57	63	62	60	59	58	59	53	52	64
	400	56	54	50	47	46	45	39	38	51	64	62	59	56	54	54	48	46	60	65	65	64	62	62	63	57	57	68
	180	44	43	41	39	38	38	32	31	43	48	50	50	50	50	51	46	45	56	55	57	57	57	57	58	53	51	63
160	340	53	51	48	44	43	42	36	34	48	62	60	56	53	51	51	44	43	57	64	64	62	60	60	60	55	54	65
	500	57	55	52	49	47	47	40	39	52	66	64	61	58	56	55	49	48	61	72	70	67	64	62	62	56	54	68
	250	45	43	41	39	38	37	31	30	43	51	52	52	51	51	51	45	44	56	57	59	58	58	57	58	52	50	63
200	575	55	53	50	46	44	44	37	36	50	64	62	58	55	53	53	46	45	59	66	66	64	62	62	62	56	56	67
	900	-	-	-	-	-	-	-	-	-	68	66	63	60	58	58	52	50	64	75	73	70	67	65	65	58	57	70
05.0	500	48	47	45	43	41	41	35	34	47	54	56	55	55	54	55	49	48	60	61	62	62	61	61	62	56	54	66
250		57	55	52	49	47	46	39	38	52	66	64	61	57	55	55	48	47	61	69	68	67	65	64	64	59	58	69
	1500	-	-	-	-	-	-	-	-	-	70	68	65	62	60	60	53	52	65	77	75	72	68	67	66	60	58	72
315	800	48	46 55	44 52	41 40	39 46	39 45	32	31 37	44 51	55 66	56 64	55 60	54 57	53 55	53 54	46	44	58 60	62 70	63 60	62 67	61 65	60	59 64	53 50	51 57	65 69
010	1400 2200	57 -	55 -	52	48	46	45 -	39	51	51	66 71	64 69	60 65	57 62	55 60	54 59	47 53	46 51	60 65	70 77	69 75	67 72	65 69	64 67	64 66	58 60	57 58	
	900		- 48	- 46	- 43	- 42	- 41	- 35	33	- 47	57	58	57	56	55		49	47	60	77 64	75 65	72 64	69 63	62	62	55	53	72 67
355	2000	59	57		50	48	47	40		53	68	66	62	59	57	56	49	47	62	72	71	69	67	66	66	60	59	71
	3200 1000		- 48	- 45	- 42	- 41	- 40	- 33	- 31	- 46	73 58	71 59	67 57	64 56	62 55	61 54	55 47	54 45	68 59	79 65	77 65	74 64	71 62	69 61	68 61	62 54	60 51	74 66
400	2200		40 56	52	42 49	41	46	აა 39	37	52	67	65	61	56 57	55 55	54 54	47 48	45 46	61	72	71		66	65	65	59	57	70
ш	3800		-	-	-	-	-	- 10-12	-	-		71		64	62		55	53	67	79	77			68	68		60	74

^{*} Niveau de puissance sonore en dB / octave à 10^{-12} W

Lorsque l'air est soufflé dans un local, on obtient une réduction supplémentaire du niveau sonore par l'action combinée de l'isolation située à l'extrémité de la conduite et l'isolation du local. Les deux valeurs peuvent être calculées selon la norme 2081 de l'Association des Ingénieurs Allemands (VDI). Le niveau sonore peut être réduit d'environ 8 dB.

Les bruits d'écoulement dépendent en grande partie de la configuration des locaux, de la longueur des tuyauteries en aval du silencieux, ainsi que de l'isolation phonique; les données calculées en laboratoire ne sont que des valeurs indicatives.

Aerotechnik E. Siegwart GmbH Untere Hofwiesen • D-66299 Friedrichsthal 〒 + 49 (0) 6897/859-0 • 昌 +49 (0) 6897/859-150 www.aerotechnik.de • info@aerotechnik.de

Edition 06/2019

Régulateur de débit cylindrique à volume constant et réglage automatisé

Bruit dissipé par voie aérienne

Si un tube avec une source sonore interne (par exemple bruit du régulateur de débit, bruit du ventilateur) est conduit à travers une chambre, une radiation sonore est émise à travers la surface du tube dans la chambre. Le niveau de pression acoustique estimé dans la pièce est en fonction du niveau de puissance acoustique dans le tube, la surface du tube, la forme de la conduite (ronde, carrée), de l'épaisseur de la paroi du tube et de la chambre d'amortissement, ainsi que de la longueur de la tuyauterie.

Pour calculer le niveau de pression acoustique prévue dans la chambre à partir du niveau de puissance acoustique à l'intérieur du tube (bruit d'écoulement LW [dB / octave]) une valeur de correction de niveau approprié doit être considérée. L'isolation acoustique d'un plafond éventuellement escamotée entre le tube rayonnant et l'espace occupé doit être estimée, en général à environ 4 dB.

Si le niveau de pression acoustique maximale requis est dépassé, un gainage avec une réduction du bruit plus élevé est nécessaire, pour exemple: une coquille dure d'enveloppe.

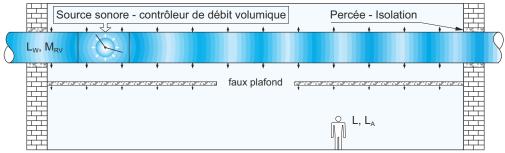


Figure 3: Représentation - bruit rayonné dans la chambre - tuyau non isolé

	Niv	e au d	e puis	sanc	e son	ore [d	B/octa	ave]	tal dB (A)
f _m	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niveau total A-évaluation dB
Bruits d'écoulement Lwselon le tableau 1	61	59	56	53	51	51	44	43	57
Amortissement de réflexion	-27	-28	-27	-21	-18	-14	-12	-10	-
Isolation du local	-4	-4	-4	-4	-4	-4	-4	-4	-
A-évaluation	-26	-16	-9	-3	0	+1	+1	-1	-
Niveau de la pression acoustique L _A	4	11	16	25	29	34	29	28	37

Exemple d'évaluation:

Défaut pour le niveau de pression sonore:38 dB (A)Régulateur de débit:modèle 233Largeur nominale:140 mmDébit:270 m³/hdifférence de pression statique:250 Pa

Niveau de pression sonore calculé: 37 dB (A)

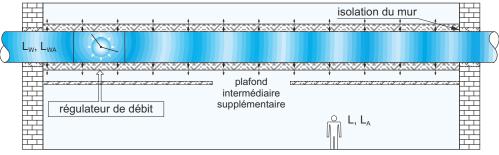


Figure 4: Calcul des bruits de dissipation d'un tuyau isolé

	Niv	eau d	e puis	sanc	e son	ore [d	B/oct	ave]	tal dB (A)
f _m	63 Hz	125 Hz	250 Hz	200 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Niveau total A-évaluation dE
Bruits d'écoulement Lw selon le tableau 1	72	70	67	64	62	62	56	54	68
Amortissement de réflexion	-27	-26	-28	-29	-27	-31	-31	-25	-
Isolation du local	-4	-4	-4	-4	-4	-4	-4	-4	-
A-évaluation	-26	-16	-9	-3	0	+1	+1	-1	-
Niveau de la pression acoustique La	15	24	26	28	31	28	22	24	35

Exemple d'évaluation:

Défaut pour le niveau de pression sonore(voir VDI 2081):

38 dB (A)

Régulateur de débit:modèle 233Largeur nominale:160 mmDébit:500 m³/hdifférence de pression statique:500 Pa

 $\begin{array}{lll} \mbox{Isolation phonique par coquille:} & 25\,\mbox{mm} \\ \mbox{Niveau de pression sonore calculé} & = 35\,\mbox{dB (A)} \\ \mbox{réduction sonore par faux plafond} & -4\,\mbox{dB(A)} \\ \end{array}$

Aerotechnik E. Siegwart GmbH Untere Hofwiesen • D-66299 Friedrichsthal 〒 + 49 (0) 6897/859-0 • 昌 +49 (0) 6897/859-150 www.aerotechnik.de • info@aerotechnik.de

Régulateur de débit cylindrique à volume constant et réglage automatisé

Tableau 2: Valeurs de correction pour le calcul des bruits de dissipation d'une conduite d'une longueur de 6 m

on nominale [mm]	8			6 tube sp	フ iiralé se		78	}	8		<u>ur</u>	lsolation de feuil la laine	n avec	1 mm /	78				iiui .		n avec1	mm_/	7	3
Section		Vale	ur d e	corre	ction [dB/oc	tave]			Vale	ur de	correc	ction [dB/oc	tave]			Vale	ur de d	correc	tion [dB/oc	tave]	
Se	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	2H 0008	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
80	36	33	32	23	17	12	11	11	39	35	39	35	32	33	34	29	42	37	45	46	47	54	56	47
100	34	32	30	22	16	12	11	10	38	35	38	34	31	33	34	28	41	38	46	45	47	54	57	47
125	29	29	31	24	21	19	15	11	35	33	37	36	32	33	36	27	35	36	42	48	51	60	58	45
140	27	28	27	21	18	14	12	10	29	29	32	32	32	33	33	26	31	30	37	42	45	52	54	44
150	25	25	23	19	14	12	11	9	28	27	30	30	29	32	32	25	30	29	36	41	44	51	54	44
160	23	23	20	18	11	10	9	8	27	26	28	29	27	31	31	25	29	28	35	40	44	51	54	44
180	22	21	18	17	12	10	9	8	25	22	25	27	27	30	30	24	27	25	32	38	43	51	53	43
		19	16	16	15	11	9	8	23	18	23	26	29	29	29	24	26	22	29	37	42	51	53	43
200	22	19	. •																					
200 250	19	16	13	12	12	10	9	8	23	18	20	24	26	30	28	24	25	20	26	35	41	50	52	42
250 315	19 18	16 14	13 12	13	11	11	9 8	8 8	22	17	19	23	27	29	28	24	26	18	26	38	42	51	53	45
250	19	16	13																					

Légende des symboles

(indexes acoustiques générals)

L_W	[dB]	niveau de puissance acoustique
M_{RV}	[dB (A)]	de puissance acoustique, pondéré
L	[dB]	niveau de pression sonore
L_A	[dB (A)]	de pression acoustique, pondéré